Extend Tilney St Lawrence Bob Minor


EP4 Triple Mode Constraints



EP4 Triple Mode Derivation

  0 1 2 3 4 5 6 7 8 9 10 11 12
1. Tilney St Lawrence Bob Minor 12 34 14 1256 36 - 36
2. Extract places made by the hunt bell 1 - - - - - 6
3. Extract places above the hunt bell 2 34 4 56 6 - -
4. Extract places below the hunt bell - - 1 12 3 - 3
Expand places above the hunt bell G F E D C B A
5. Reverse and invert places from [3] - - 1 12 3 34 5
6. Separate into two overlapping strips - - 1 12 3 34 5
7. Using the start change and overlap - 1 12 3 34 5
8. Expand places above mode in [7] to next stage - 1 18 9 90 E
9. Connect the static [6] and expanded [8] strip - - 1 12 3 34 5 - 1 18 9 90 E
10. Reverse and invert places in [9] back again 2 34 4 5T T - 8 90 0 ET T - -
Expand places below the hunt bell A B C D E F G
11. Below places from [4] - - 1 12 3 - 3
12. Separate into two overlapping strips - - 1 12
13. Using the start change and overlap 1 12 3 - 3
14. Expand places above mode in [13] to next stage 1 14 1 16 1 18 9 - 9
15. Connect the static [12] and the expanded [14] strip - - 1 12 1 14 1 16 1 18 9 - 9
Expand places of the hunt bell A B C D E F G
16. Hunt bell places from [2] 1 - - - - - 6
17. Separate into two overlapping strips 1 - -
18. Using the start change and overlap - - - - - 6
19. Expand places above mode in [18] to next stage - - - - - - - - - T
20. Connect the static [17] and the expanded [19] strip 1 - - - - - - - - - - - T
Recombine above, below and hunt bell places A B C D E F G H I J K L M
21. Above places from [10] 2 34 4 5T T - 8 90 0 ET T - -
22. Below places from [15] - - 1 12 1 14 1 16 1 18 9 - 9
23. Hunt bell places from [20] 1 - - - - - - - - - - - T
24. [Unnamed] Bob Maximus 12 34 14 125T 1T 14 18 1690 10 18ET 9T - 9T

Extension and contraction candidates using extension process EP4-6/1:6:1/2:2:1/1:2:1  

136245 Tilney St Lawrence Bob Minor 34.14.1256.36-36,12
13528469T70E [Unnamed] Bob Maximus 34.14.125T.1T.14.18.1690.10.18ET.9T-9T,12
Minor Maximus
Tilney St Lawrence Bob Minor [Unnamed] Bob Maximus