5040 Birmingham Carter Triples

Composed by Alan S Burbidge
1234567
1235674 a
1436752 b
1436725 c
1536724 d
1536742 c
1236745 e
1237456 f
1236457 g
1235764 2a
1237645 h
1235647 g
1236475 a
1254736 i
1254763 j
1264735 k
1264753 l
3764512 m
2761543 n
2761534 o
2763514 p
2763541 o
2164537 q
7164532 r
1764523 2t
3724561 u
3724516 j
3714526 v
3714562 j
3264517 w
7264513 y
1364527 3t
7364512 z
1264537 3t
7263541 n
7263514 o
7261534 p
7261543 o
7264531 aa
7264315 ab
7264351 ac
1364572 m
2764513 t
3164527 ad
7164523 r
1764532 2t
2364517 ae
7314562 u
7314526 j
7324516 v
7324561 j
7364521 af
1264573 t
1234756 ag
1237564 a
1236547 ah
1235476 a
1234765 f
1537642 b
1537624 c
1437625 d
1437652 c
1237654 e
1234657 g
1235746 2a
1267435 i
1267453 j
1257463 v
1257436 j
1237465 ai
6237451 aj
6237415 ak
1235467 al
1234675 a
1236754 h
1237546 a
1234567 ah
– = 5 CS Bob; x = 5.1.3.5 SE Double Bob; s = 567 CS Single.

a = x1.s2.x3.4.x4.5
b = x1.s2.x3.4.x5
c = s1.x1.2.x2.3.x3.4.5.x5
d = s1.x1.2.x2.3.x3.4.x5
e = s1.x1.2.x2.3.x3.4
f = x1.s2.4.x4.5
g = 1.x1.s2.x3.4.x4.5
h = x1.s2.x3.4.5
i = x1.s2.x4.s5.x5
j = 1.x1.2.x2.3.4.x4.s5.x5
k = 1.x1.2.x2.3.x4.5.x5
l = s1.x1.2.x2.3.4.x4.5.x5
m = x2.3.x3.4.x5
n = s1.x3.s4.x4.5.x5
o = 1.x1.2.3.x3.s4.x4.5.x5
p = 1.x1.2.x3.s4.x4.5.x5
q = 1.x1.2.x3.4.x5
r = s1.x2.3.x3.4.5.x5
t = s1.x2.3.x3.4.x5
u = s1.x2.3.x4.s5.x5
v = 1.x1.2.x2.3.x4.s5.x5
w = 1.x1.2.x2.3.x5
y = s1.3.x3.4.5.x5
z = s1.x2.3.4.s5.x5
aa = 1.x1.2.x3.4.5.x5
ab = x1.2.x2.3.x3.4.x4.5.x5
ac = s1.x1.2.x2.3.x3.4.x4.5.x5
ad = s1.x2.3.4.x5
ae = s1.3.x3.4.x5
af = 1.x1.2.x2.3.s5.x5
ag = x1.2.x2.3.x4.5
ah = s1.x1.s2.x3.4.x4.5
ai = 1.x1.2.x2.3.x4.5
aj = 1.x1.x2.3.x3.4.x4.5.x5
ak = 1.x1.s2.x2.3.x3.4.x4.5.x5
al = 1.x1.x3.4.x4.5
24 567s, 24 657s, 144 crus, 96 4-bell runs (48f,48b), 120 46s, Whittingtons, Queens, Tittums, Kings, Backrounds.
Blue Line
Structure
  • Backstroke start
  • Mid lead start
  • Mid lead finish
  • Variable hunt
  • Variable cover
Methods
  • Spliced
  • ATW
  • Mixed stage
  • Change every lead
  • Every lead different
  • Jump method
Calls
  • Standard calls
  • Twin bob
  • Jump calls
  • No calls
  • Tenors together
  • Strictly tenors together
  • Multipart calling
Changes
  • Adjacent changes
  • Identity changes
  • Jump changes
  • Tenors reversed
  • Palindromic
  • Exact multipart
Truth
  • True
  • Round block
  • Single extent block
  • Multi-extent block
  • Repetition between calls
  • Internal rounds
Number of parts
1
Number of methods
1
Changes of method
0
Stage
Triples
True rows
5040
False rows
0
Complete extents
1
Partial extents
0
Applicable leadhead codes
Date composed
Default calls
None
Types of call
3
   5 CS Bob (–)
224
   5.1.3.5 SE Double Bob (x)
276
   567 CS Single (s)
82
Date Type Details